3.6.46 \(\int \frac {(a+a \sec (c+d x))^2 (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [546]

Optimal. Leaf size=219 \[ \frac {4 a^2 (3 A+4 B+5 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (6 A+7 B+14 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)} \]

[Out]

2/7*A*(a+a*sec(d*x+c))^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/35*(4*A+7*B)*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*
x+c)^(3/2)+2/105*a^2*(33*A+49*B+35*C)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+4/5*a^2*(3*A+4*B+5*C)*(cos(1/2*d*x+1/2*c)^
2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+4/21*a^2
*(6*A+7*B+14*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+
c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 219, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {4171, 4102, 4081, 3872, 3856, 2719, 2720} \begin {gather*} \frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {4 a^2 (6 A+7 B+14 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {4 a^2 (3 A+4 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 (4 A+7 B) \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^2}{7 d \sec ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(7/2),x]

[Out]

(4*a^2*(3*A + 4*B + 5*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (4*a^2*(6*A
+ 7*B + 14*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2*(33*A + 49*B +
35*C)*Sin[c + d*x])/(105*d*Sqrt[Sec[c + d*x]]) + (2*A*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(
5/2)) + (2*(4*A + 7*B)*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(35*d*Sec[c + d*x]^(3/2))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4081

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
 + (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Dist[1/(d*n), Int[(d*Csc[e + f*x
])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B},
 x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]

Rule 4102

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Dist[b/(a*d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a*
B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]

Rule 4171

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \sec (c+d x))^2 \left (\frac {1}{2} a (4 A+7 B)+\frac {1}{2} a (A+7 C) \sec (c+d x)\right )}{\sec ^{\frac {5}{2}}(c+d x)} \, dx}{7 a}\\ &=\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \sec (c+d x)) \left (\frac {1}{4} a^2 (33 A+49 B+35 C)+\frac {1}{4} a^2 (9 A+7 B+35 C) \sec (c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{35 a}\\ &=\frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 \int \frac {-\frac {21}{4} a^3 (3 A+4 B+5 C)-\frac {5}{4} a^3 (6 A+7 B+14 C) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{105 a}\\ &=\frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} \left (2 a^2 (3 A+4 B+5 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{21} \left (2 a^2 (6 A+7 B+14 C)\right ) \int \sqrt {\sec (c+d x)} \, dx\\ &=\frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} \left (2 a^2 (3 A+4 B+5 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx+\frac {1}{21} \left (2 a^2 (6 A+7 B+14 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {4 a^2 (3 A+4 B+5 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (6 A+7 B+14 C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 (33 A+49 B+35 C) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)}}+\frac {2 A (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 (4 A+7 B) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.45, size = 189, normalized size = 0.86 \begin {gather*} \frac {a^2 \sqrt {\sec (c+d x)} \left (80 (6 A+7 (B+2 C)) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-112 i (3 A+4 B+5 C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+2 \cos (c+d x) (504 i A+672 i B+840 i C+5 (51 A+28 (2 B+C)) \sin (c+d x)+42 (2 A+B) \sin (2 (c+d x))+15 A \sin (3 (c+d x)))\right )}{420 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(7/2),x]

[Out]

(a^2*Sqrt[Sec[c + d*x]]*(80*(6*A + 7*(B + 2*C))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (112*I)*(3*A +
4*B + 5*C)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))
] + 2*Cos[c + d*x]*((504*I)*A + (672*I)*B + (840*I)*C + 5*(51*A + 28*(2*B + C))*Sin[c + d*x] + 42*(2*A + B)*Si
n[2*(c + d*x)] + 15*A*Sin[3*(c + d*x)])))/(420*d)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 483, normalized size = 2.21

method result size
default \(-\frac {4 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{2} \left (120 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-348 A -84 B \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (378 A +224 B +70 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-117 A -91 B -35 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+30 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+35 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-84 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+70 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-105 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(483\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(120*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^8+(-348*A-84*B)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(378*A+224*B+70*C)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+
1/2*c)+(-117*A-91*B-35*C)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+30*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+
1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+35*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-84*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+70*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-105*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E
llipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/
(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.55, size = 226, normalized size = 1.03 \begin {gather*} -\frac {2 \, {\left (5 i \, \sqrt {2} {\left (6 \, A + 7 \, B + 14 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (6 \, A + 7 \, B + 14 \, C\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 21 i \, \sqrt {2} {\left (3 \, A + 4 \, B + 5 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 i \, \sqrt {2} {\left (3 \, A + 4 \, B + 5 \, C\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (15 \, A a^{2} \cos \left (d x + c\right )^{3} + 21 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (12 \, A + 14 \, B + 7 \, C\right )} a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-2/105*(5*I*sqrt(2)*(6*A + 7*B + 14*C)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqr
t(2)*(6*A + 7*B + 14*C)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 21*I*sqrt(2)*(3*A + 4*
B + 5*C)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*I*sqrt(2)*
(3*A + 4*B + 5*C)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15*
A*a^2*cos(d*x + c)^3 + 21*(2*A + B)*a^2*cos(d*x + c)^2 + 5*(12*A + 14*B + 7*C)*a^2*cos(d*x + c))*sin(d*x + c)/
sqrt(cos(d*x + c)))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{2} \left (\int \frac {A}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2 A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2 B}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {2 C}{\sqrt {\sec {\left (c + d x \right )}}}\, dx + \int C \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(7/2),x)

[Out]

a**2*(Integral(A/sec(c + d*x)**(7/2), x) + Integral(2*A/sec(c + d*x)**(5/2), x) + Integral(A/sec(c + d*x)**(3/
2), x) + Integral(B/sec(c + d*x)**(5/2), x) + Integral(2*B/sec(c + d*x)**(3/2), x) + Integral(B/sqrt(sec(c + d
*x)), x) + Integral(C/sec(c + d*x)**(3/2), x) + Integral(2*C/sqrt(sec(c + d*x)), x) + Integral(C*sqrt(sec(c +
d*x)), x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + a/cos(c + d*x))^2*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(7/2),x)

[Out]

int(((a + a/cos(c + d*x))^2*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________